

What can we learn from Quasi-experimental evaluations?

Jon Einar Flatnes, Chr. Michelsen Institute

June 27, 2023

RCTs are the "first best" option for creating a counterfactual

Without intervention

With intervention

But sometimes you cannot randomize

- → Ethical considerations
 - → E.g. intentionally withholding potentially beneficial programs that are free or almost free to provide at the margin
- → Practical considerations
 - → E.g. organization is working with a partner that only operates in certain communities
- → Feasibility considerations
 - → E.g. intervention has already started

Luckily, there are other "second best" options

- → The objective is still to create a counterfactual, i.e. a measure of what would have happened in the absence of the intervention
- →Other methods can approximate a counterfactual, but are based on several (sometimes strong) assumptions or have other limitations
- → These methods are known as "quasi-experimental" methods

Bad counterfactuals (may lead to incorrect conclusions)

- → Compare before and after (no control):
 - → A change in outcomes over time can be due to many things besides the program (weather, economy, trends, etc.)
- → Non-program recipients as controls (no baseline or other controls)
 - → Program recipients and non-program recipients are often very different, even without the program

Quasi-experimental methods

- → Today, we will look at 3 quasi-experimental methods:
 - → Difference-in-differences (DiD)
 - → Regression discontinuity (RD)
 - → Propensity score matching (PSM)

Difference-in-Differences

DiD: Overview

- → **What it is**: Compares changes in outcomes between before and after intervention but controlling for the changes in a control group.
 - → Similarly: Compares difference between treatment and control group, controlling for baseline differences

→ When to use:

- → When you have baseline & endline data
- → When you have a control group that does not receive the intervention
- →When the control group is similar to the treatment group but may differ by factors that don't change over time

DiD: Example

→ Suppose we have data on preprogram/policy incomes (or other variables of interest)

	Control	Treatment
Before	\$1,000	\$1,100
After	\$1,200	\$1,400

→ Here, 'Control' refers to the group of people who did NOT receive/adopt the program/policy, while 'Treatment' refers to the group who did receive/adopt the program/policy

$$\rightarrow DiD = (y_{treat,after} - y_{contr,after}) - (y_{treat,before} - y_{contr,before})$$

→ The income increased by \$300 in the group that received the program/policy, but \$200 of those would have happened anyway, as we can see from the control group.

DiD: Example

	Control	Treatment
Before	\$1,000	\$1,100
After	\$1,200	\$1,400

→ DiD=(1400-1200)-(1100-1000)=100

OR

→ DiD=(1400-1100)-(1200-1000)=100

DiD: Assumptions

- → Only works if the "parallel trends assumption" is satisfied:
 - →in the absence of treatment (the program/policy), the two groups (control/treatment) would evolve the same over time
- → In other words: the only difference between the treatment and the control groups is the level of the outcome variable(s)

DiD: How to test for parallel trends?

- → Need data from before the baseline
- → The control group and the treatment group should follow a parallel trend prior to the intervention
- → Historic LSMS or government data on village-level may be useful

DiD: Other assumptions & limitations

- → Participants in the control group are not given the intervention, i.e., not moved to the treatment group (and vice versa).
- → If there are unobserved differences between treatment and control at baseline, parallel trends are unlikely to hold, leading to biased (inaccurate) estimates of effects.
- → Any other changes or interventions that affect one group more than the other and occur between baseline and endline can lead to biased (inaccurate) estimates of effects.

Regression Discontinuity

RD: Overview

→ What it is: Compares outcomes of people who fall right above and right below some (semi-)continuous eligibility criteria or other program cut-off

→ When to use:

- → When no baseline data are available (though baseline data helps)
- → When you have one or more clear (semi-)continuous eligibility criteria or cut-offs that are unique to the project and cannot be manipulated

→Only households with landholdings of 10 acres or less are eligible for an agricultural microfinance loan

→Only households with landholdings of 10 acres or less are eligible for an agricultural microfinance loan

→ We can compare the people who fell right below the eligibility criteria to the those who fell right above

→ Suppose we plot farm income against landholdings using the collected data

- → We notice a clear break in the trend at the cutoff
- → The break represents the impact of the program
- → We can estimate the magnitude of this break using statistics

RD: Assumptions

- → People right above and right below the cutoff are similar
 - → Baseline data would be useful to test this
- → The cutoff should be unique to the project, i.e. there should be no other projects, apart from the project to be evaluated, that uses the same cutoff score
- → The eligibility rule and cutoff should be strictly enforced and not be able to be manipulated

RD: Limitations

- → RD does not measure impact of the project for participants that are farther away from the cutoff.
 - → Results may not be generalizable to the entire population.
- → It needs a large sample size to have enough statistical power.
- → Eligibility criteria involving non-numerical categories (e.g. sex) or a limited number of numerical categories (e.g. # of ag. plots) cannot be used

RD: Examples of usable eligibility criteria

- → Income (e.g. only those with incomes below \$1,000)
- → Age (e.g. only people below age 40)
- → **Test scores** (e.g. only students who scored above 70%)
- → Landholdings (e.g. only households with less than 10 acres)
- → **Geography** (e.g. only households within a specified polygon on the map; should be careful with political boundaries, such as counties or districts, as there are often other systematic differences between such units)

Propensity score matching

PSM: Overview

→ What it is: A method of creating a control group by matching each observation in the treatment group with one or several observations from the sample who did not receive the treatment, based on observable characteristics.

→ When to use:

- → When you have a large, high-quality dataset of many observable characteristics
- →When unobservable characteristics between treatment and control groups have no impact on project allocation
- → When baseline data don't exist (but works much better if baseline data are available)

PSM: Example

	Received intervention							Did not receive intervention							
HHID		Age	Sex	Income (\$)	Land (ac.)	etc.		HHID		Age	Sex	Income (\$)	Land (ac.)	etc.	
	1	40	М	5,387	4	.###			101	45	M	8,567	2	.###	
	2	25	M	2,908	2	###			102	23	F	3,452	. 5	###	
	3	75	F	10,608	14	.###			103	57	F	2,765	2	.###	
	4	56	М	3,005	4	.###			104	75	F	9,868	15	###	
	5			1,154		###			105			1,345		.###	

→ If we only had a few variables, we could possibly find nontreated households who matched each treated household exactly (or almost exactly)

PSM: Overview

- → But with many variables, it is impossible to find exact, or almost exact, matches
- → Instead, we can calculate a propensity score, which is an estimated probability that a given household/person received the intervention. This propensity score is calculated using statistics
 - → E.g. if the intervention was targeted to low-income farmers (but not perfectly), the propensity score will be higher for these individuals and lower for e.g. high-income business owners

PSM: Example

	Received intervention							Did not receive intervention						
HHID		Age	Sex	Income (\$)	Land (ac.)	etc.	Prop. Score	HHID	Age	Sex	Income (\$)	Land (ac.)	etc.	Prop. Score
	1	40	M	5,387	4	.###	0.87	10:	L 45	M	8,567	. 2	.###	0.05
	2	25	M	2,908	2	.###	0.08	102	2 23	3 F	3,452	. 5	5###	0.45
	3	75	F	10,608	14	.###	0.64	103	3 57	'F	2,765	2	.###	0.9
	4	56	M	3,005	4	.###	0.97	104	1 75	F	9,868	15	5###	0.76
	5	73	F	1,154	10	###	0.71	10	5 34	М	1,345		.###	0.24

→ For each observation in the dataset, we estimate a propensity score (i.e. how likely is the person to have received the intervention, assuming we didn't know treatment status)

PSM: Example

	Received intervention								Did not receive intervention							
HHID		Age	Sex	Income (\$)	Land (ac.)	etc.	Prop. Score		HHID		Age	Sex	Income (\$)	Land (ac.) e	etc.	Prop. Score
	1	40	M	5,387	7 4:	###	0.87)_		101	45	М	8,567	2#	###	0.05
	2	25	M	2,908	3 2	###	0.46			102	23	F	3,452	5#	!##	0.45
	3	75	F	10,608	3 14	###	0.64			103	57	F	2,765	2#	!##	0.9
	4	56	M	3,005	5 4:	###	0.97			104	75	F	9,868	<u>15</u> #	!##	0.76
	5	73	F	1,154	10:	###	0.71)_		105	34	M	1,345	12#	###	0.24

→ We can then match observations from the treatment dataset with observations from the control dataset with similar propensity scores (several methods exists for how to match)

PSM: Common support

- → Need to have sufficient observations in the control group with similar propensity scores to those in the treatment group
- → I.e., for each person who received the intervention, there should exist a person who did not receive the intervention but would have been equally likely to have received it

PSM: Assumptions

- → Assumes that you have a very high-quality, large dataset
- → Assumes that there are no systematic differences in unobservable characteristics between treatment and control groups
- → Assumes that there are enough treatment and control participants with the same propensity score match (common support)

PSM: Limitations

- → Can lead to biased estimates if unobservable characteristics determine program participation
- → If there are many participants with no propensity score match, we may not have enough statistical power
- → Results are conditional on structure of control group and may not be generalizable to the whole population.
- → Potential implication that data are collected but not used

Summary

Method	Need baseline data	Need control (non- program recipients)	Need strict eligibility criteria/cut-off	Observables must explain any difference b/t treatment and control	Main limitation(s)				
Randomized Controlled Trial	No, but helps	Yes	No	No	Not always ethical, practical, or feasible				
Difference-in- difference	Yes	Yes	No	No, but helps	The control group and the treatment group should follow a parallel trend prior to the intervention				
Regression Discontinuity	No, but helps	Yes	Yes	No	->Need a large sample size, especially around the cutoff ->Results may not be generalizable				
Propensity Score Matching	No, but Yes helps		No	Yes	->Can lead to biased estimates if unobservable characteristics determine program participation ->Need a large sample size and common support				

Group work

- → If randomization is not feasible, which methods would you use to establish a valid comparison group?
 - → Any quasi-experimental methods that can be used?